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Search Trees

 Search trees can be used to support dynamic sets,
i.e. data structures that change during lifetime,
where an ordering relation among the keys is defined.

 They support many operations, such as
 SEARCH,
 MINIMUM, MAXIMUM,
 PREDECESSOR, SUCCESSOR,
 INSERT, DELETE.

 The time that an operation takes
depends on the height h of the tree.

Binary Search Trees
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Binary Search Trees

 In the following we look at binary search trees
– a special kind of binary trees –
that support the mentioned operations on dynamic sets

Binary Search Trees
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Binary Search Tree

 A binary tree is a binary search tree,
if the following binary-search-tree property is satisfied:

 For any node x of the tree:
 If y is a node in the left subtree of x then      key[y] ≤ key[x]
 If y is a node in the right subtree of x then    key[y] ≥ key[x]
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Binary Search Trees

Examples of Binary Search Trees
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Binary Search Trees

Example:
Printing the keys of a Binary Search Tree in ascending order
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Binary Search Trees

Inorder tree walk

 Inorder_Tree_Walk prints the elements of a binary search
tree in ascending order

 For a tree T the initial call is
Inorder_Tree_Walk(root[T])

Inorder_Tree_Walk(x)
if x!=NIL then

Inorder_Tree_Walk(left[x])
print(key[x])
Inorder_Tree_Walk(right[x])
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Binary Search Trees

Inorder tree walk

 If x is the root of a binary (search) tree,
the runtime of Inorder_Tree_Walk is Θ(n)

 Intuitive explanation:
after the initial call of Inorder_Tree_Walk the following is
true:
for each of the (n -1) “not-NIL” nodes of the tree 
there are exactly two calls of Inorder_Tree_Walk –
one for its left child and one for its right child              
(for details see [Corman])
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Binary Search Trees

Searching for a node with given key  k

 Recursive algorithm

 For a tree T the initial call for searching for key k is
Inorder_Tree_Walk(root[T],k)

 Runtime of Tree_Search(x,k) is O(h)  where h is the height
of the tree

Tree_Search(x,k)
if x=NIL or k=key[x] then

return x
if k<key[x]

then return Tree_Search(left[x],k)
else return Tree_Search(right[x],k)
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Binary Search Trees

Searching for a node with given key  k

 Non-recursive algorithm

 This non-recursive (iterative) version of tree-search is usually
more efficient in practice since it avoids the runtime system
overhead for recursion

Iterative_Tree_Search(x,k)
while x!= NIL and k!= key[x] do

if k<key[x]
then x:= left[x]
else x:= right[x]

return x
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Binary Search Trees

Searching for a node with given key

 Example
 Search for k = 31
 Search for k = 3
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Binary Search Trees

Minimum and maximum

 The element with minimum key value is always
in the “leftmost” position of the binary search tree
(not necessarily a leaf!)

 Runtime of TreeMinimum and TreeMaximum ist O(h)
 Remark:

The pseudo code TreeMaximum for the maximum is analogous

Tree_Minimum(x)
while left[x]!=NIL do // left[x]=NIL ⇨ no smaller element

x := left[x]
return x
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Binary Search Trees

Minimum and maximum 

 Example
 Search for Minimum
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Binary Search Trees

Successor and predecessor

 If all keys are distinct, the successor (predecessor) of node x
in sorted order is the node with the smallest key larger (smaller)
than key[x]

Tree_Successor(x)
if right[x]!=NIL then

return Tree_Minimum(right[x])
y := p[x]
while y!=NIL and x=right[y] do

x := y
y := p[y]

return[y]
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Binary Search Trees

Successor and predecessor

 Remark: The pseudo code for Tree_Predescessor is analogous
 Runtime of Tree_Successor or Tree_Predecessor ist O(h)

 Because of the binary search property, for finding the successor or
predecessor it is not necessary to compare the keys: We find the
successor or predecessor because of the structure of the tree.

 So even if keys are not distinct, we define the successor
(predecessor) of node x as the nodes returned by
Tree_Successor(x) or Tree_Predeccessor(x).
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Binary Search Trees

First summary

 On a binary search tree of heigth h,
the dynamic-set operations

SEARCH, MINIMUM, MAXIMUM, 
SUCCESSOR and PREDECESSOR 

can be implemented in time O(h)
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Binary Search Trees

Insertion and deletion

 The operations of insertion and deletion change the dynamic set
represented by a binary search tree

 If a new node is inserted into a binary search tree, or if a node is
deleted, the structure of the tree has to be modified in such a way
that the binary-search-tree property will still hold:

 A new node z to be inserted has fields
 left[z] = right[z] = NIL
 key[z] = v,   v - any value

 The new node is always inserted as a leaf
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Binary Search Trees

Insertion (pseudo code)

Tree_Insert(T,z)

y := NIL
x := root[T]

while x!=NIL do
y := x
if key[z]<key[x]

then x := left[x]
else x := right[x]

p[z] := y

if y=NIL
then root[T] := z // Tree t was empty

else if key[z]<key[y]
then left[y] := z
else right[y] := z

Runtime of Tree_Insert: O(h)
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Binary Search Trees

Insertion (example)

a) Tree_Insert(T,z)   (where key(z) = 14)
b) Tree_Insert(T,z)   (where key(z) = 39)
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Binary Search Trees

Insertion (example)

a) Tree_Insert(T,z)   (where key(z) = 14)
b) Tree_Insert(T,z)   (where key(z) = 39)
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Binary Search Trees

Deletion

 For deleting a node z from a binary search tree we can distinguish
three cases
 z is a leaf
 z has only one child
 z has two children

 If z is a leaf, the leaf is simply deleted
 If z has only one child, then z is “spliced out” by making a new link

from p[z] to the child of z
 If z has two children, then we first find its successor y (which has no

left child!), then splice out y, and finally replace the contents of z
(key and satellite data) by the contents of y.
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Binary Search Trees

Deletion (pseudo code)

Tree_Delete(T,z)

if left[z]= NIL or right[z]= NIL
then y := z
else y := Tree_Successor(z)

if left[y]!= NIL 
then x := left[y] 
else x := right[y]

if x != NIL
then p[x] := p[y]

if p[y] = NIL

then root[T] := x

(go on next page)
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Binary Search Trees

Deletion (pseudo code)

else if y = left[p[y]]
then left[p[y]]:= x
else right[p[y]]:= x

if y != z
then key[z] := key[y]

(copy y`s satellite data into z)

return y

■ The runtime of  Tree_Delete is O(h)
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Binary Search Trees

Analysis (results)

 Height of randomly built binary search trees with n nodes
 Best case:    h = lg n
 Worst case:  h = n – 1

 Average case behaviour:
 Expected height of a randomly built search tree with n modes

= O(lg n)
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Analysis (results)

 If the tree is a complete binary tree with n nodes,
then the worst-case time is Θ(lg n).

 If the tree is very unbalanced (i.e. the tree is a linear chain),
the worst-case time is Θ(n).

 Luckily, the expected height of a randomly built binary search
tree is O(lg n)
⇨ basic operations take time Θ(lg n) on average.

Binary Search Trees


